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Since the late eighties a number of interesting four-dimensional string vacua with

particle content not far from that of the supersymmetric (SUSY) standard model have

been found (see e.g. the discussion in [1] for heterotic string models and [2] for intersecting

brane models, and references therein). Let us recall that the gauge groups obtained after

compactification are generically larger than the standard model gauge group, containing

extra U(1) symmetries, SU(3) × SU(2) × U(1)n [3]. Actually, at least one of these U(1)’s

is usually anomalous1. For example, it was found in [5] that only 192 different three-

generation models containing the SU(3) × SU(2) × U(1)n gauge group can be constructed

within the Z3 heterotic orbifold with two Wilson lines. The matter content of 175 of

them was analyzed in detail and only 7 of them turn out not to have an anomalous U(1)

associated. Although the anomaly is cancelled by the four-dimensional Green-Schwarz (GS)

mechanism, it generates a Fayet-Iliopoulos (FI) contribution to the D-term [6]. This effect

is crucial for model building [7] since some scalars C’s, in particular SU(3)×SU(2) singlets,

acquire large vacuum expectation values (VEVs) in order to cancel the FI contribution,

breaking the extra gauge symmetries, and allowing the construction of realistic standard-

like models [8 – 10]2. In particular, many particles, which we will refer to as ξ, acquire a

high mass because of the generation of effective mass terms. These come for example from

operators of the type Cξξ. In this way vector-like triplets and doublets and also singlets

become heavy and disappear from the low-energy spectrum. The remarkable point is that

the standard model matter remain massless, surviving through certain combinations with

other states.

The FI breaking also has an important implication in the flavour structure, that

is, derivation of realistic quark/lepton mass matrices in string models. For example,

stringy 3-point couplings in heterotic Z3 orbifold models do not lead to completely realistic

quark/lepton mass matrices before the FI breaking3. However, after the FI breaking, the

particle mixing appears through Yukawa couplings including scalars C’s with non-vanishing

VEVs, and that can induce non-trivial quark/lepton mass matrices for light modes [14].

Detailed study on realizing quark/lepton mass matrices has been carried out in [15], show-

ing the possibility for deriving realistic quark/lepton mass matrices in string models.

Generally speaking, a flavour structure leading to realistic fermion mass matrices may

affect somehow their superpartner sector, that is, soft SUSY breaking sfermion masses

and the so-called A-terms. Thus, it is quite important to study sfermion masses and A-

terms in each flavour structure, of course including the above-mentioned particle mixing

scenario through the FI breaking. Indeed, there are strong experimental constraints on

flavour changing neutral currents (FCNCs). That requires degeneracy at least between the

1In [4], some conditions for the absence of the anomalous U(1) in heterotic string models are discussed,

and classifications of models with anomalous U(1) are also attempted.
2In brane models where several anomalous U(1)′s are usually present the FI terms do not necessarily

trigger further gauge symmetry breaking since they may vanish at the orbifold singularity. However, the

possibility of using non-vanishing FI terms for model building is also present and has been discussed in the

literature (see e.g. [11]).
3Stringy 3-point couplings in non-prime order orbifold models have possibilities for realizing non-trivial

quark/lepton mass matrices [12, 13]. Higher dimensional operators may also be important to derive realistic

quark/lepton mass matrices.
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first and the second generations of sfermion masses, unless they are sufficiently large like

O(10) TeV. For example, the FCNC constraints on the Kaon system require

Re
(

(md
12)

2
LL,RR/m2

ave

)

≤ 4 × 10−2 mave(GeV )

500
, (1)

Im
(

(md
12)

2
LL,RR/m2

ave

)

≤ 3 × 10−3 mave(GeV )

500
, (2)

where mave denotes the average squark mass, and (md
12)

2
LL,RR denotes the (1,2) entry of

left-handed and right-handed down sector squark mass squared matrices in the super-CKM

basis, respectively. The latter (md
12

)2LL,RR is given by multiplying the corresponding mass

squared difference between the first and second squarks by diagonalizing matrices (V d
L,R)12

of the left-handed and right-handed quarks. Thus, the mass difference between the first

and second squarks is severely constrained. The other mass differences are constrained

more weakly or there is no experimental constraint.

Hence, it is important to study sfermion masses in the particle mixing scenario through

the FI breaking, because that happens in generic string models and moreover that has the

possibility for deriving realistic quark/lepton mass matrices. One of the important aspects

in our flavour scenario is that the FI breaking generates D-term contributions to soft scalar

masses [16 – 22]. Furthermore, some physical particles may appear combined with other

states, and this introduces another modification to scalar masses [19]. The aim of this paper

is to point out that even if a three-generation standard-like model has originally flavour-

independent soft scalar masses, the particle mixing contribution generates non-universality

among them. Of course, depending on the size of these contributions, the FCNC problem

which was apparently absent in the original stringy state basis may reappear after the

particle mixing.

Let us consider the simplest example, a model with Yukawa superpotential

W = (λ1C1f + λ2C2ξ2) ξ1 , (3)

where f denotes a (would-be) standard model matter field, ξ1,2 denote two extra matter

fields (triplets, doublets or singlets), C1,2 are the fields developing large VEVs denoted

by 〈C1,2〉 = c1,2, and λ1,2 are the Yukawa couplings. In the following we will use the

notation c̃1,2 ≡ λ1,2c1,2. Clearly the ‘old’ physical particle f will combine with ξ2. It

is now straightforward to diagonalize the scalar squared mass matrix arising from the

supersymmetric mass terms in eq. (3), |∂W/∂φα|
2, and the soft scalar masses, m2

α|φα|
2,

|c̃1f + c̃2ξ2|
2 + m2

f |f |
2 + m2

ξ2 |ξ2|
2 +

(

|c̃1|
2 + |c̃2|

2 + m2
ξ1

)

|ξ1|
2 , (4)

to find two very massive (one of them is trivially ξ1) and one light combination. The latter,

f ′, is obviously due to the mixing between f and ξ2, and has a mass

m2
f ′ =

1

2

{

m2
f + m2

ξ2 +
(

m2
f − m2

ξ2

) |c̃2|
2 − |c̃1|

2

|c̃2|2 + |c̃1|2

}

, (5)

where we have neglected in the above formula contributions suppressed by O(m2
f,ξ2

/|c̃1,2|
2).

It is worth noticing here that in the case mf,ξ2 = 0, one has mf ′ = 0, i.e. one recovers the

limit of unbroken supersymmetry where the combination f ′ is massless.
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Clearly, the particle mixing generates an additional contribution to soft scalars masses,

depending on the soft masses of extra matter ξ’s, and also on the mixing angles c̃’s. For

the above example (5), only in the particular case when mf = mξ2 this contribution is

vanishing and one recovers mf ′ = mf . In most of realistic models the matter fields appear

in three copies with the same quantum numbers reproducing the three generations of the

standard model4, and this seems to imply that there would be flavour-independent soft

scalar masses, since mf i = mf , mξi
2

= mξ2, and therefore mf ′i = mf ′ as apparently

deduced from the above example. Actually, the situation is more involved.

Let us consider the following explicit case: a Z3 orbifold with two Wilson lines [24, 25]

where all chiral fields appear automatically in three copies, and therefore three-generation

standard-like models have been constructed [8 – 10]. For more concreteness, one introduces

non-vanishing Wilson lines for the first and second T 2’s, but not for the third T 2. Hence,

the degeneracy of massless spectrum on three fixed points of the third T 2 is not resolved,

while degeneracy for the first and second T 2’s is resolved by non-vanishing Wilson lines.

Let us recall first that the FI breaking induces additional terms to soft scalar masses5

due to F-terms, namely, the so-called D-term contribution [16 – 22]. In particular, the

presence of an anomalous U(1) after compactification generates the dilaton-dependent FI

term, that is, the D-term of the anomalous U(1) is given by

DA =
δA
GS

S + S∗
+

∑

α

(T + T ∗)nαqA
α |φα|

2 , (6)

where the first term corresponds to the dilaton-dependent Fayet-Iliopoulos term with the

GS coefficient δA
GS proportional to the value of the anomaly, and the second one is the

usual D-term with the U(1) charges qA
α of the fields φα. Then, some of these fields (with

vanishing hypercharges), let us call them Cβ , develop large VEVs along the D-flat direction

in order to cancel the FI term, inducing the D-term contribution to the soft scalar masses

of the observable fields. Totally, the soft scalar mass squared is given by [18]

m2
α = m2

3/2

{

1 + nα cos2 θ + qA
α

∑

β(T + T ∗)nβqA
β |Cβ |

2
[

(6 − nβ) cos2 θ − 5
]

∑

β(T + T ∗)nβ (qA
β )2|Cβ|2

}

. (7)

Here, for simplicity we have assumed that the fields Cβ with VEVs have no other U(1)

charges. The first two terms are the usual contributions, with the angle θ parameterizing

the direction of the goldstino in the dilaton S/overall modulus T field space [26], and the

modular weights with typical values nα = −1(−2) for untwisted(twisted) matter fields. The

third term is the D-term contribution, which is proportional to U(1) charge qA
α . Obviously,

if the observable fields have vanishing U(1) charges, qA
α = 0, this contribution is also

vanishing. However, the observable fields have usually non-vanishing charges in explicit

4Recently, in [23] a new type of models has been constructed, where the three generations consist of

singlets and doublets under the D4 discrete flavour symmetry. The D4 singlets correspond to the third

generation, while the D4 doublets correspond to the first and second generations.
5Let us remark that there is no additional contributions to gaugino masses and A-terms when Higgs

fields relevant to such symmetry breaking have less F-term than those of dilaton and moduli fields.
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models [8 – 10], and the effect of this contribution must be taken into account in the analysis.

The natural size of D-term contributions is of O(m2

3/2
), while in certain models [22] it may

be enhanced.

As we can see in the above formula, the D-term contribution generates an additional

non-universality among soft scalar masses, depending on qA
α . For an illustrating example,

in the simplest case that only a single field C develop a VEV in order to cancel the FI

term, the above result reduces to the following form:

m2
α = m2

3/2

{

1 + nα cos2 θ +
qA
α

qA
C

[

(6 − nC) cos2 θ − 5
]

}

, (8)

where qA
C and nC are the U(1) charge and modular weight of the field C, respectively. Notice

that even in the dilaton-dominated case (sin θ = 1) the soft scalar masses are non-universal

m2
α = m2

3/2

(

1 − 5
qA
α

qA
C

)

. (9)

Nevertheless, for our realistic flavour scenario, where all matter fields appear automat-

ically in three copies (generations), the value of qA
α is the same for all of them. Also, since

the three generations appear in the same twisted (untwisted) sector, they have the same

modular weights nα. Thus we have flavour-independent soft scalar masses. Of course,

we still can have non-universal soft masses within the same generation. This is obviously

harmless from the FCNC viewpoint. Let us then come back now to the particle mixing

issue, and study the modifications to this result.

Since all chiral fields appear automatically in three copies in this realistic flavour

scenario, the Yukawa superpotential for the example in (3) must be modified as [15]

W = ε′gN (ξ1
1 ξ2

1 ξ3
1)







C1
1

C3
1
ε3 C2

1
ε3

C3
1
ε3 C2

1
C1

1
ε3

C2
1ε3 C1

1ε3 C3
1













f1

f2

f3







+ε′′gN (ξ1
1 ξ2

1 ξ3
1)







C1
2

C3
2
ε3 C2

2
ε3

C3
2
ε3 C2

2
C1

2
ε3

C2
2ε3 C1

2ε3 C3
2













ξ1
2

ξ2
2

ξ3
2






, (10)

where the flavour index i of f i and ξi
1,2 correspond to three fixed points on the third T 2.

The magnitude of Yukawa couplings have been calculated explicitly in heterotic orbifold

models [27]. Suppressed Yukawa couplings are obtained depending on distances among

fixed points6. Furthermore, the coupling selection rule allows only two types of combina-

tions of fixed points on each T 2; 1) all of three correspond to the same fixed point on T 2,

and 2) all of three correspond to three different fixed point each other on T 2. In the latter

case, the Yukawa coupling includes the suppression factor εi depending on the volume of

the i-th T 2 as approximately εi ≈ 3 e−
2π
3

Ti , where Ti is the moduli parameter correspond-

ing to the volume of the i-th T 2, while the former case does not lead to such suppression

6More exactly, the values of the Yukawa couplings are given by a Jacobi theta function of the moduli

fields.
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factor. For a typical value Ti = O(1) one obtains εi ∼ 0.1. In addition, g in (10) is the

unification coupling constant and N is a quantity proportional to the root square of the

volume of the unit cell for the Z3 lattice. Also we have gN ∼ 1. The factors ε′, ε′′ can take

different values

ε′, ε′′ = 1 , ε1 , ε2 , ε1ε2 , (11)

depending on the particular case.

Now, in order to simplify the analysis following [15], let us consider the following VEVs

for the Ci
1,2 fields7;

c1
1 ≡ c1 , c2

1 = c3
1 = 0 ,

c1
2 = c3

2 = 0 , c2
2 ≡ c2 . (12)

Here, we expect c1 ∼ c2 naturally. Then (10) gives rise to the following superpotential:

W = gN
{(

ε′C1f
1 + ε′′C2ε3ξ

3
2

)

ξ1
1 +

(

ε′C1ε3f
3 + ε′′C2ξ

2
2

)

ξ2
1 +

(

ε′C1ε3f
2 + ε′′C2ε3ξ

1
2

)

ξ3
1

}

.

(13)

Following the discussion for (3) we can deduce straightforwardly that the masses for the

three generations of physical particles f ′ are

m2

f ′1 =
1

2

{

m2
f + m2

ξ2 +
(

m2
f − m2

ξ2

) |ĉ2ε3|
2 − |ĉ1|

2

|ĉ2ε3|2 + |ĉ1|2

}

,

m2

f ′2 =
1

2

{

m2
f + m2

ξ2 +
(

m2
f − m2

ξ2

) |ĉ2|
2 − |ĉ1|

2

|ĉ2|2 + |ĉ1|2

}

,

m2

f ′3 =
1

2

{

m2
f + m2

ξ2 +
(

m2
f − m2

ξ2

) |ĉ2|
2 − |ĉ1ε3|

2

|ĉ2|2 + |ĉ1ε3|2

}

, (14)

where

ĉ1 ≡ ε′c1 , ĉ2 ≡ ε′′c2 , (15)

and the soft masses mf = mf i , mξ2 = mξi
2

, with i = 1, 2, 3, are given by (7).

Now the particle mixing contribution generates an additional non-universality among

soft scalar masses of different generations. Thus there may appear dangerous FCNC effects

from this lack of universality. The question now is whether or not these contributions can

be avoided in order not to have FCNC problems. Notice that if we manage to have

mf = mξ2, then universality mf ′i = mf with i = 1, 2, 3 is recovered. In the present case of

the Z3 orbifold with soft masses given by (7) this means that the modular weights n and

anomalous U(1) charges qA of the fields f and ξ2 must be the same. For particles in twisted

sectors the modular weights are always the same, however they can have different values

of qA. Thus the lack of universality is the most general situation mainly because of the

D-term contributions. Nevertheless, at least an explicit example of a standard-like model

can be found [8 – 10] where the relevant couplings producing the mixings have the fields

f and ξ2 with the same qA, and therefore flavour-independent scalar masses are obtained.

7In principle we are allowed to do this since the cancellation of the FI D-term only imposes
P

α
(T +

T ∗)nαqA
α (|c1

α|
2 + |c2

α|
2 + |c3

α|
2) = const, and therefore flat directions arise.
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The reason for this result is that in this model there are only two possible values of qA.

Thus from (3) we deduce that qA
f = qA

ξ2
= qA

C1
= qA

C2
= −qA

ξ1
/2. Therefore, this discussion

implies that a way to avoid the FCNC constraints is to construct string models such that

the matter fields f and ξ2 have the same U(1) charges like in [8 – 10].

Clearly, this situation does not hold in generic string model. For example, we can find

in appendix A of [7] two other models where more possibilities for the values of qA for the

different fields are present8. Hence, it is important to examine whether there is another

way out to avoid the dangerous FCNC problem in a generic situation, that is, the matter

fields f and ξ2 have different U(1) charges.

Let us then discuss whether it is possible to suppress non-degeneracy of sfermion

masses due to the particle mixing in these orbifold models, in the most general situation

with mf 6= mξ2. For that let us consider three patterns for the values of ĉ1, ĉ2; 1) ĉ1 ∼ ĉ2,

2) ĉ1 ¿ ĉ2 and 3) ĉ1 À ĉ2, following [15]. When ĉ1 ∼ ĉ2 one obtains from (14) the following

non-universality: m2

f ′1 ∼ m2
ξ2

, m2

f ′3 ∼ m2
f , m2

f ′2 ∼ 1

2
(m2

f + m2
ξ2

). Clearly, depending on

the U(1) charges of the fields f and ξ2 the degree of non-universality can be important, as

discussed above. This case may face the dangerous FCNC problem.

The model with ĉ1 ¿ ĉ2 may also be realized. For example, this is the case when

ε′′ = 1, ε′ = ε1ε2, and therefore using (15) one obtains ĉ2 = c2 and ĉ1 = c1ε1ε2. Since one

expects c1 ∼ c2, as obtained in explicit models [8 – 10], ĉ1 is much smaller than ĉ2. As a

consequence, the three generations have m2

f ′i ∼ m2
f . This result is simply understood from

the fact that in this case the mixing between matter fields f i and ξi
2 almost vanishes for all

of flavour indices i (i = 1, 2, 3), and that all of the three light generations approximately

correspond to f i. That is not interesting for the purpose to derive realistic fermion mass

matrices, because in this case there is no particle mixing effect on fermion mass matrices

of three light generations, and these matrices even after the FI breaking are almost the

same as those before the FI breaking. Nevertheless, there is a subtlety in some cases,

as for example when ε′′ = 1, ε′ = ε1,2 or ε′′ = ε1, ε′ = ε1ε2, since now ĉ1 ∼ ĉ2ε3 .

Then, still we have two generations, i = 2, 3 in (14), with m2

f ′i ∼ m2
f , but the other has

m2

f ′1 ∼ 1

2
(m2

f + m2
ξ2

). This may not give rise to a FCNC problem if we assign the first two

generations of the standard model to f ′2,3, and the third one to f ′1. In this case, two of

three light modes f ′2,3 approximately correspond to f2,3, and the other light mode f ′1 to a

mixture between f1 and ξ3
2
. That would lead to non-trivial fermion mass matrices because

of the particle mixing.

Finally, the third pattern arises when ĉ1 À ĉ2, i.e. ε′ À ε′′. For example with ε′′ = ε1ε2,

ε′ = 1, one gets m2

f ′i ∼ m2
ξ2

. In this case, all of the three light generations approximately

correspond to ξi
2, and there is no particle mixing effect in fermion mass matrices as the

previous case. Thus, this case is not interesting. As in the previous pattern there is

the subtlety that for ε′′ = ε1,2, ε′ = 1 or ε′′ = ε1ε2, ε′ = ε1,, one still has m2

f ′i ∼ m2
ξ2

for

8However, these models are not realistic since fields with vanishing hypercharges cannot be found, and

therefore the extra U(1) symmetries cannot be broken. Actually those two models have a very involved

U(1) combination for the hypercharge (and for the anomalous U(1)), and we might speculate that realistic

models should have simple U(1) combinations giving rise to the hypercharge and the anomalous U(1), and

therefore a very limited possibilities for the values of qA for the different fields.
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i = 1, 2, but m2

f ′3 ∼ 1

2
(m2

f +m2
ξ2

). In this case, two of three light modes f ′1,2 approximately

correspond to ξ3,1
2

, respectively, and the other light mode f ′3 is a mixture between f3 and

ξ2
2 . If the first two generations are assigned to f ′1,2, there may not be the FCNC problem.

Of course, we are interested in cases leading to realistic fermion mass matrices. In [15,

28] quark and lepton masses and mixing angles have been studied in the context of the Z3

orbifold with mixing between fields due to the FI breaking. In particular, interesting results

have been obtained for the structure of quark mass matrices when ĉ1 À ĉ2, the first two

generations correspond to f ′1,2 ∼ ξ3,1
2

and the third generation corresponds to the mixture

between f3 and ξ2
2 . Such a case may be free from the FCNC problem as discussed above.

To summarize, we have studied sfermion masses of the flavour structure that all of

matter fields appear originally as three copies and the particle mixing through the FI

breaking leads to non-trivial quark/lepton mass matrices. These studies are important

because such particle mixing usually happens in generic string model, and that is one of the

scenarios to derive realistic quark/lepton mass matrices. Our result shows that although

sfermion masses are flavour-independent in the original basis, light modes after particle

mixing, in general, have flavour-dependent sfermion masses mainly due to the D-term

contributions. Therefore, this type of the flavour scenario may face the FCNC problem.

One way to avoid it is to construct string models such that mixed states corresponding to

three light generations have the same U(1) charges. Another way out is to consider the

situation that particle mixing effects are negligible in the first two generations and these

fields approximately correspond to the original fields, while in the third generation particle

mixing effects are large enough to lead to non-trivial fermion mass matrices. In this case,

the sfermion masses between the first and second generations are degenerate. Indeed, it

has been shown in [15] that this case leads to interesting quark mass matrices.

Here we have assumed that the scalar fields C’s have vanishing U(1) charges except the

anomalous U(1), and break only the anomalous U(1) symmetry. However, in generic string

models such scalar fields have non-vanishing charges other than only one U(1) symmetry,

and anomaly-free and anomalous U(1) symmetries as well as non-abelian symmetries are

broken at the same time. Then, complicated D-term contributions are induced as shown

in [18]. However, each D-term contribution is proportional to U(1) charges of broken

symmetries. For such a complicated case we can repeat our analysis, and the situation is

almost the same as in the simple case we have studied here. That is, sizable non-universal

sfermion masses are, in general, induced through the particle mixing mainly due to the

D-term contributions, even when all of matter fields appear originally as three copies and

sfermion masses are flavour-independent before the particle mixing. One way to avoid

the FCNC problem is to construct string models that mixed states have the same U(1)

charges for symmetries leading to large D-term contributions. Another way is to consider

the situation that the particle mixing effects are negligible for the first two generations,

while the particle mixing in the third generation would lead to non-trivial quark/lepton

mass matrices.

Let us finally remark that, even in the cases where flavour non-universality is present at

the string scale, this not need to be necessarily a problem [26, 29] if the effect is substantially
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diluted when taking into account the flavour-independent gluino mass contribution to the

renormalization group running. For example, the squark masses squared receive radiative

corrections due to the gluino mass M1/2 as ∆m2 ∼ 6.7 × M2

1/2
. Thus, if the gluino mass

is large sufficiently compared with the D-term contributions, non-universality of sfermion

masses through the particle mixing mainly due to the D-term contributions would not be

severely dangerous.

Acknowledgments
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